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Dear Giga Science Reviewer

Reviewer reports:

Reviewer #1: The authors present an algorithm called GEDIT using information from a
reference dataset to estimate cell type abundances in a target dataset. This manuscript
is not qualified to be published in the Giga Science because of the following reasons:
1. GEDIT does not show enough novelty.

As the authors stated in the response document, GEDIT has two key innovations:
signature gene selection by information entropy and the row scaling step. As shown in
Figure 2a, the signature gene selection only has a limited improvement than the others
in terms of error. The authors also did not have enough evidence to support how and
why the row scaling step is helpful. On top of these 2 data preprocessing steps, I did
not find any innovations on the model of a non-negative linear regression.
We refer the reviewer to figure 4D, in which we demonstrate that row scaling
dramatically improves accuracy of predictions. Here, we vary the row scaling
parameter in order to evaluate the effect of row scaling on accuracy. When this
parameter is set to 0 (the default value for GEDIT) both average and maximum error
are greatly reduced compared to a setting of 1.0 (i.e. row scaling is disabled).

2. GEDIT does not add much values in the field.
Although GEDIT is shown to have appealing results in comparison to existing methods
on benchmarking experiments, it doesn't significantly outperform other methods in real
data analysis in regards to Pearson correlation and average error. As demonstrated in
Supplementary Figures 4 and 5, a main determinant of results quality for deconvolution
is the reference used, not necessarily the algorithm.

We refer to Figure 4, which demonstrates that GEDIT does indeed outperform other
tools in terms of Pearson correlation. When any of the four references are used,
GEDIT produces higher correlations between predicted and actual fractions than any
other tool (the leftmost “all” column). In addition, the highest observed correlations for
each of the 3 mixtures sets (ascites, cellmix, blood) are achieved by GEDIT (i.e. when
the Human Primary Cell Atlas, LM22, and BLUEPRINT are used as reference sources,
respectively). Lastly, unlike the three other reference-based tools, GEDIT produces
positive correlations for all cell types regardless of choice of reference. GEDIT similarly
outperforms other tools when evaluated by error (Supplementary Figure 2).
Moreover, we include in the supplementary materials an additional comparison of bulk
deconvolution tools (Supplementary Figure 6). Here, we compare the error of
CIBERSORT, DeconRNASeq, dtangle, and GEDIT when applied to simulated
pancreatic islet mixtures. Again, GEDIT outperforms the other deconvolution tools.
In addition, we are pursuing a separate project performing extensive benchmarking of
the current field of deconvolution tools. We believe more comprehensive comparisons
of these tools’ performances is appropriate, but that such an undertaking represents a
separate project that should not be bundled with the publication of a new tool. For the
interest of the editors and reviewers, we attach an early version of this benchmarking
manuscript.

3. I still think comparing GEDIT to other methods using single-cell RNA-seq as a
reference is necessary.
Utilizing single-cell RNA-seq for deconvolution becomes cutting-edge research and
many tools have been designed for this purpose such as MuSic. These methods are
proved to have superior performance using microarray as references and are
commonly used. It is critical to demonstrate whether GEDIT has better performance
than these methods.

 At the reviewer’s request, we have performed a comparison between GEDIT and two
well known single cell deconvolution tools (SCDC and MuSiC). Specifically, we utilize
the testing framework developed by the SCDC authors to prepare synthetic mixtures
using single cell data from pancreatic islets. We include an additional section
describing these results in the main manuscript (text below), and also refer the
reviewer to Figure 5 and Supplementary Figure 5.
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Comparison to Single Cell Methods
We also compare GEDIT to two contemporary deconvolution tools that utilize single
cell data as their reference, namely SCDC and MuSiC [10,11]. We reproduce the steps
provided by the SCDC authors to generate two sets of 100 simulated pancreatic
mixtures. These data are created in silico using single cell data from two recent
studies, and contain randomized mixtures of alpha, beta, delta, and gamma cells from
pancreatic islets [33,34]. Data from a third study was used as a reference for all 3 tools,
and similarly contains alpha, beta, gamma, and delta cells [35]. In the case of SCDC
and MuSiC, these data are used in their original single cell form. For GEDIT, pseudo-
bulk expression profiles for each of the four cell types were created by averaging the
expression values of each member cell (e.g. expression of all alpha cells were
averaged to create an alpha cell reference profile).
The results of GEDIT compare favorably to the two single cell tools (Figure 5). GEDIT
produces the lowest error on the two sets of simulated mixtures by a significant margin.
Based on the metric of correlation between predicted and actual fractions, GEDIT
produces results comparable to SCDC, and either comparable or superior to MuSiC,
depending on the set of mixtures (Table 4, Supplementary Figure 5). Thus, by using
the methodology of averaging cell clusters in the reference dataset, GEDIT can be
applied to datasets suitable for SCDC or MuSiC. We also apply three other bulk
deconvolution tools to this same dataset, and show that GEDIT provides the best
performance out of the four (Supplementary Figure 6).

Reviewer #2: For the most part the responses are sufficient and the authors have
addressed the concerns, and the manuscript is improved. I especially appreciate that
claims have been toned down and better contextualized.

A small issue remains about minor comment 6. My point was that the readers should
be made clearly aware that doing three deconvolutions is not ideal, and strictly
speaking invalid (e.g. cell contents totalling over 100%). I suggested two hypothetical
ways to avoid this and am not at all surprised it's not easy to fix with data on hand. In
the context of the demonstration in this particular study, what the authors did originally
is acceptable. The problem I raised is if people start copying that practice in their own
studies, and in the authors' own interest they presumably wouldn't want to be seen as
endorsing it. The statement in the supplement that "creating a comprehensive
reference from single cell data will likely produce superior results" should be more
prominent, and it's not just about superior results, it's also about validity of having a
single reference vs. multiple independent deconvolutions.

To be concrete, I'd suggest that in the main body a parenthetical could be added to the
effect that "it would be more appropriate to have a single reference containing all cell
types and performing a single deconvolution; see supplement for discussion". As it
stands I don't think the addition to the supplement is referenced in the main paper.

We appreciate this feedback. We have adjusted the language in this section as follows:

To assess the use of GEDIT across very large datasets, we applied the tool to 17,382
GTEx RNA-seq samples collected from various tissues. However, no single reference
contained all cell types expected to be present and combining references from
separate experiments and platforms is problematic (Supplementary Figures 9-11).
Therefore, we took an alternate approach by performing deconvolution three times
using three separate references (BlueCode, Human Primary Cell Atlas, Skin
Signatures). We then combine these outputs by taking their median value; after
normalization, we treat this median value as a final cell type estimate (see
Supplementary Materials for more details). While this approach did enable predictions
spanning a larger number of cell types than are present in any one reference matrix, it
must me noted that it is not a proper substitute for a single unified reference (Figure 8).

Additional Information:

Question Response

Are you submitting this manuscript to a
special series or article collection?

No
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Experimental design and statistics

Full details of the experimental design and
statistical methods used should be given
in the Methods section, as detailed in our
Minimum Standards Reporting Checklist.
Information essential to interpreting the
data presented should be made available
in the figure legends.

Have you included all the information
requested in your manuscript?

Yes

Resources

A description of all resources used,
including antibodies, cell lines, animals
and software tools, with enough
information to allow them to be uniquely
identified, should be included in the
Methods section. Authors are strongly
encouraged to cite Research Resource
Identifiers (RRIDs) for antibodies, model
organisms and tools, where possible.

Have you included the information
requested as detailed in our Minimum
Standards Reporting Checklist?

Yes

Availability of data and materials

All datasets and code on which the
conclusions of the paper rely must be
either included in your submission or
deposited in publicly available repositories
(where available and ethically
appropriate), referencing such data using
a unique identifier in the references and in
the “Availability of Data and Materials”
section of your manuscript.

Have you have met the above
requirement as detailed in our Minimum
Standards Reporting Checklist?

Yes
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Abstract 

 The cell type composition of heterogeneous tissue samples can be a critical variable in both 

clinical and laboratory settings. However, current experimental methods of cell type quantification (e.g. 

cell flow cytometry) are costly, time consuming, and can introduce bias. Computational approaches 

that infer cell type abundance from expression data offer an alternate solution. While these methods 

have gained popularity, most fail to produce accurate predictions for the full range of platforms 

currently used by researchers, or for the wide variety of tissue types often studied. We present the 

Gene Expression Deconvolution Interactive Tool (GEDIT), a tool that overcomes these limitations, 

compares favorably with existing methods, and provides superior versatility. Using both simulated and 

experimental data, we extensively evaluate the performance of GEDIT and demonstrate that it returns 

robust results under a wide variety of conditions. These conditions include multiple platforms 

(microarray and RNA-seq), tissue types (blood and stromal), and species (human and mouse). Finally, 

we provide reference data from eight sources spanning a broad range of stromal and hematopoietic 

types in both human and mouse. This reference database allows the user to obtain estimates for a 

wide variety of tissue samples without having to provide their own data. GEDIT also accepts user 

submitted reference data, thus allowing the estimation of any cell type or subtype, provided that 

reference data is available. 

 

Author Summary 

 The Gene Expression Deconvolution Interactive Tool (GEDIT) is a robust and accurate tool 

that uses gene expression data to estimate cell type abundances. Extensive testing on a variety of 

tissue types and technological platforms demonstrates that GEDIT provides greater versatility than 

other cell type deconvolution tools. GEDIT utilizes reference data describing the expression profile of 

purified cell types, and we provide in the software package a library of reference matrices from various 

sources. GEDIT is also flexible and allows the user to supply custom reference matrices. A GUI 

interface for GEDIT are available online, as well as source code and reference matrices, are available 
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online [40,41].  

 

Introduction 

 Cell type composition is an important variable in biological and medical research. In laboratory 

experiments, cell sample heterogeneity can act as a confounding variable. Observed changes in gene 

expression may result from changes in the abundance of underlying cell populations, rather than 

changes in expression of any particular cell type [1]. In clinical applications, the cell type composition 

of tissue biopsies can inform treatment. For example, in cancer, the number and type of infiltrating 

immune cells has been shown to correlate highly with prognosis ([2], [3], [4]). Moreover, patients with 

a large number of infiltrating T cells are more likely to respond positively to immunotherapy [5]. 

 

 For many years, cell flow cytometry via FACS sorting has been the standard method of cell 

type quantification. More recently, single cell RNA-seq methods such as 10x Chromium, Drop-Seq, 

and Seq-Well have become available [6,7]. However, both approaches suffer from significant 

limitations. FACS sorting is cumbersome and expensive, and some sample types require hours of 

highly skilled labor to generate data. Similarly, single cell RNA-seq methods remain expensive for 

large sample studies. Additionally, cell types such as neurons, myocytes, and adipocytes are difficult 

for these technologies to capture due to cell size and morphology. 

 

Both FACS sorting and single cell methods have the potential to introduce bias, as these 

technologies require that tissue samples be dissociated into single cell suspensions. Many stromal cell 

types are tightly connected to one another in extracellular matrices. The procedures necessary to 

create single cell suspensions can damage some cells, while others remain in larger clusters that are 

not captured or sequenced. Consequently, subtle differences in sample preparation can produce 

dramatically different results [8,9]. While FACS sorting and single cell methods can produce pure 

samples of each cell type, the observed cell counts may not accurately represent the cell type 

https://paperpile.com/c/cOBaQU/9Rw91
https://paperpile.com/c/cOBaQU/bRQ4l
https://paperpile.com/c/cOBaQU/9EWPK
https://paperpile.com/c/cOBaQU/BE9zV
https://paperpile.com/c/cOBaQU/2wRZb
https://paperpile.com/c/cOBaQU/Slj4h
https://paperpile.com/c/cOBaQU/Slj4h
https://paperpile.com/c/cOBaQU/HSi3u
https://paperpile.com/c/cOBaQU/VJrmZ+rZ5Mr
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abundances in the original sample. Tools like SCDC and MuSiC utilize single cell reference data to 

perform bulk deconvolution, but require that multi-subject single cell data be available for all the cell 

types of interest, which is not always the case [10,11]. 

 

During the past several years, digital means of cell type quantification, often referred to as cell 

type deconvolution or decomposition, have become a popular complement to FACS sorting and single 

cell approaches. However, these methods are still developing, and often suffer from limitations. For 

example, tools MCP-Counter and xCell allow for deconvolution of a set of predefined cell types, but do 

not support the inclusion of additional cell types or subtypes in a user friendly manner [12,13]. 

CIBERSORT is slow to run on large datasets, particularly if signature genes are not specified, and 

provides reference data only for hematopoietic cell types [14]. 

 

 To overcome some of the limitations of existing cell abundance estimation tools, we present 

the Gene Expression Deconvolution Interactive Tool (GEDIT). GEDIT utilizes gene expression data to 

accurately predict cell type composition of tissue samples. We have assembled a library of reference 

data from 11 distinct sources and use these data to generate thousands of synthetic mixtures. In order 

to produce optimal results, these synthetic mixtures are used to test and refine the approaches and 

parameters used by GEDIT. We compare the performance of GEDIT relative to other tools using three 

sets of mixtures containing known cell type proportions: 12 in vitro mixtures of immune cells 

sequenced on microarrays, six RNA-seq samples collected from ovarian cancer ascites, and eight 

RNA-seq samples collected from blood. We also use GEDIT to deconvolute two sets of human tissue 

samples: 21 skin samples from patients with skin diseases, and 17,382 samples of varied tissues from 

the GTEx database. Lastly, we apply GEDIT to the Mouse Body Atlas, a collection of samples 

collected from various mouse tissues and cell types. We find that GEDIT compares favorably to other 

cell type deconvolution tools and is effective across a broad range of datasets and conditions. 

 

Results 

https://paperpile.com/c/cOBaQU/kB9FN+52Bmo
https://paperpile.com/c/cOBaQU/Qo5uM+VsLcW
https://paperpile.com/c/cOBaQU/vTrGg
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Reference Data 

 

 Reference data profiling the expression of purified cell types is a requirement for reference-

based deconvolution. Methods that do not directly require reference data, such as non-negative matrix 

factorization, still require knowledge of expression profiles or marker genes in order to infer the identity 

of the predicted components. For this study, we have assembled or downloaded a set of 11 reference 

matrices, each containing the expression profiles of eight to 29 cell types (Table 1). These data 

sources span multiple platforms, including bulk RNA-seq, microarray, and single-cell RNA-seq. 

Complete details on the sources and assembly of these matrices are described in the methods [14–

24]. 

Matrix 

Specie

s Reference Platform 

# of 

Cell 

Types Cell Types 

Human Skin Signatures  Human (Swindell et al. 2013) 

Multi-

Microarray 21 Immune 

Human Body Atlas Human (Su et al. 2004) 

Affymetrix 

U133A/GNF1

H 13 Immune 

Human Primary Cell Atlas  Human (Mabbott et al. 2013) 

Affymetrix 

U133 Plus 2.0 26 Immune and Stromal 

BLUEPRINT*  Human (Martens and Stunnenberg 2013) Bulk RNA-Seq 8 Immune 

ENCODE*  Human (ENCODE Project Consortium 2004) Bulk RNA-Seq 29 Mostly Stromal 

LM22  Human (Newman et al. 2015) 

Affymetrix 

Microarray 22 Immune 

10x Single Cell Dataset*   Human (Zheng et al. 2017)  

Single Cell 

RNA-Seq 9 Immune 

ImmunoStates Human (Vallania et. al., 2018) 

Multi-

Microarray 20 Immune 

https://paperpile.com/c/cOBaQU/d9fTB+f7pHt+segww+HNnUi+93edw+vTrGg+TRrj1+6u7JV+3esq3+3JT5d+ti4Ag
https://paperpile.com/c/cOBaQU/d9fTB+f7pHt+segww+HNnUi+93edw+vTrGg+TRrj1+6u7JV+3esq3+3JT5d+ti4Ag
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Tabula Muris Mouse (The Tabula Muris Consortium, 2018) 

Single Cell 

RNA-seq 12 Immune and Stromal 

Mouse Body Atlas Mouse (Lattin et al, 2008) 

Affymetrix 

Mouse 

Genome 430 

2.0 Array 20 Immune and Stromal 

ImmGen Mouse (Heng et al, 2008) 

Affymetrix 

Gene 1.0 ST 137 

Immune with many 

subtypes 

 

Table 1. Library of Reference Data. Asterisk denotes matrices assembled from source data as part of 

this project. All matrices are compatible with GEDIT and available on the GitHub repository [40].  

 

GEDIT Algorithm 

 GEDIT requires as input two matrices of expression values. The first is expression data is 

collected from the mixtures that will be deconvoluted; each column represents one mixture, and each 

row corresponds to a gene. The second matrix contains reference data, with each column 

representing a purified reference profile and each row corresponding to a gene. In a multi-step 

process, GEDIT utilizes the reference profiles to predict the cell type proportions of each submitted 

mixture (Figure 1). 

 

Figure 1. The GEDIT pipeline. The input matrices are quantile normalized then reduced to matrices 

containing only signature genes. Next, a row-scaling step serves to control for the dominating effect of 

highly expressed genes. Lastly, linear regression is performed, and predictions of cell type 

abundances are reported to the user. 

 

Input Description Allowed Values Default Value 
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RefMat Matrix of purified cell types 

N by M matrix; N is number of 

genes, M is number of cell types NA 

MixMat 

Matrix of mixtures to be 

deconvoluted 

N by P matrix; N is number of 

genes, P is number of mixtures  NA 

SigMeth 

Method of signature gene 

selection 

Entropy, MeanRat, MeanDiff, 

ZScore, fsRat, fsDiff Entropy 

NumSigs 

Average number of signature 

genes per cell type [1, 10,000] 50 

MinSigs  

Minimum number of signatures 

per cell type [1,NumSigs] =NumSigs 

RowScale Extent of per-row normalization [0.0,1.0] 0 

 

Table 2. GEDIT inputs include two matrices and four parameter settings. RefMat is an expression 

matrix documenting the expression profiles of each cell type to be estimated. MixMat is an expression 

matrix documenting expression values for each sample to be deconvoluted. SigMeth determines the 

method by which signature genes are selected. NumSigs determines the total number of signature 

genes, whereas MinSigs sets the minimum number of signature genes for each cell type. RowScale 

refers to the extent to which expression vectors are transformed to lessen the dominating effect of 

highly expressed genes, with a value of 0.0 representing the most extreme transformation. Default 

values were determined by evaluating performance on a set of synthetic mixtures (Figure 2). 

 

Parameter Tuning 

We generated a large number of synthetic mixtures in silico to test the efficacy of GEDIT and 

to assess how accuracy varies as a function of four parameter choices (SigMeth, NumSigs, MinSigs, 

RowScale, described in Table 2). We produced a total of 10,000 simulated mixtures of known 

proportions using data from four reference matrices: BLUEPRINT, The Human Primary Cell Atlas, 10x 
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Single Cell, and Skin Signatures. We then ran GEDIT on these simulated mixtures and evaluated its 

performance while varying four parameter settings (Figure 2) and other design choices. For this 

reason, these synthetic mixtures were not used to evaluate the performance of GEDIT relative to other 

tools. Instead, separate datasets were used for that purpose, as described in the section 

“Performance Comparison to Other Deconvolution Tools”. Based on these results, we selected default 

values for each parameter (SigMeth = Entropy, NumSigs = 50, MinSigs = 50, RowScale = 0.0). Full 

details on the generation of these simulations are described in the supplementary materials. 

 

Figure 2. Effect of GEDIT parameter choices on accuracy of predictions in simulated experiments. 

10,000 simulated mixtures were generated, each using one of four reference matrices, with either four, 

five, six, or ten cell types being simulated. Deconvolution was performed using a separate expression 

matrix than the one used to generate the mixtures. When not otherwise noted, we use the following 

parameters: signature selection method = entropy; number of signatures = 50; row scaling = 0.0; and 

number of fixed genes = number of signatures. 

 

Preprocessing and Quantile Normalization 

The first step in the GEDIT pipeline is to render the two matrices comparable. This is done by 

first excluding all genes that are not shared between the two matrices. Genes that have no detected 

expression in any reference cell type are also excluded, as they contain no useful information for 

deconvolution. Both matrices are then quantile normalized, such that each column follows the same 

distribution as every other; this target distribution is the starting distribution of the entire reference 

matrix. 

 

Signature Gene Selection 

GEDIT next identifies signature genes. Gene expression experiments can simultaneously 

measure tens of thousands of genes, but many of these genes are uninformative for deconvolution. 

Specifically, genes with similar expression levels across all cell types are of little use, as observed 
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expression values in the mixtures offer no insight into cell frequencies. Genes that are highly 

expressed in a subset of cell types are more informative, and we refer to these as signature genes. By 

using only signature genes, rather than the entire expression matrix, the problem of deconvolution 

becomes more tractable and less computationally intensive. Moreover, identification of signature 

genes can be valuable to researchers for other applications (e.g. cell type assignment for scRNA-seq 

data). 

 In order to identify the best signature genes in a given reference matrix, GEDIT calculates a 

signature score for each gene. By default, this score is computed using the concept of information 

entropy. Information entropy quantifies the amount of information in a probability distribution, with 

highly uniform distributions having the highest entropy. The expression vector for each gene (i.e. the 

set of expression values across all cell types in the reference) is divided by its sum, such that the 

entries can be interpreted as probabilities. Information entropy is then calculated according to its 

mathematical definition (see Methods), and genes with the lowest entropy are selected as signature 

genes. Entropy is minimized when expression is detected only in a single cell type and maximized 

when expression values are equal across all cell types. Thus, by selecting genes with low entropy, we 

favor genes that are expressed in a cell type specific manner. By default, 50 signature genes are 

selected for each cell type in the reference matrix. We chose 50 signature genes, and entropy as our 

scoring method, because it returned optimal results when run on 10,000 synthetic mixtures (see 

Figure 2a,b). 

 We also evaluated the effect of accepting more signature genes for some cell types than 

others, depending on how many genes have low entropy. In this scheme, on average 50 signature 

genes are used per cell type. However, a fourth parameter is used, which specifies the minimum 

number of signature genes per cell type. After these have been selected, remaining signature genes 

are added based only on lowest entropy, regardless of cell type of maximal expression. We found that 

this parameter had minimal effect on accuracy, when applied to synthetic mixtures (Figure 2c). 

Therefore, this option is not used by default, though it can be specified by the user. 
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Row Scaling and Linear Regression 

 One complication in the application of linear regression to gene expression data is the 

drastically different scale at which some genes are expressed. For example, CD14 and THEMIS 

(Figure 3) have both been identified as signature genes: CD14 for monocytes and THEMIS for CD4+ 

T cells. However, CD14 is expressed at much higher levels in most cell types and will have a larger 

impact on the estimation of cell type composition, relative to THEMIS. In other words, the possible 

penalty resulting from a poor fit of CD14 is much larger than the penalty from a poor fit of THEMIS. 

 

Figure 3. The “row scaling” transformation, as implemented by GEDIT. CD14 and THEMIS are two 

examples of signature genes with drastically different magnitudes of expression. CD14 is a signature 

gene for monocytes, and THEMIS for CD4+ T cells. The original expression vectors are transformed, 

such that all values fall between 0.0 and 1.0, equalizing the effect of genes with varying magnitudes of 

expression. 

 

 In order to equalize the effect of each signature gene on the linear regression, we implement a 

transformation that we term row scaling. Specifically, the range of all observed values for a particular 

gene (including reference cell types and samples) is adjusted such that the maximum value is 1.0 and 

the minimum value is 0.0. As a result, all genes have a comparable influence on the calculation of the 

linear regression solution, regardless of overall magnitude of expression. This transformation can be 

modulated by adjusting the row scaling parameter. By default, the value of this parameter is 0.0, and 

the transformation is applied as described above. Values between 0.0 and 1.0 are also allowed, which 

reduces the extent of the transformation (see Methods for details). Linear regression is then performed 

in R using the glmnet package, as described in the methods. 

 

Performance Comparison to Other Deconvolution Tools 

 In order to assess the performance of GEDIT relative to other tools, we perform an experiment 

comparing GEDIT to 4 other deconvolution tools on datasets of known cell-type content 
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(CIBERSORT, DeconRNASeq, dtangle and xCell; [13,14,25,26]). Non-deconvolution tools like MCP-

counter, SAVANT, and the DCQ algorithm are excluded from this study because they do not predict 

cell type fractions [12,27,28].Tools that require single cell data, such as MuSiC and CPM, are also 

excluded, as this study is limited to tools that operate on bulk expression data [11,29]. See Table 3 for 

a summary of current bulk deconvolution methods. 

     Reference Data Provided with Tool 

Tool Publication Custom Reference Approach Output 

Number of 

Datasets Cell Types Species 

GEDIT Nadel et. al., 2020 Yes Deconvolution 

Predicted 

Fractions 11 

Immune 

and Stromal 

Human, 

Mouse 

CIBERSORT Newman et. al., 2015 Yes Deconvolution 

Predicted 

Fractions 1 Immune Human 

xCell Aran et. al., 2017 No Marker Genes 

Predicted 

Fractions 5 

Immune 

and Stromal Human 

dtangle Hunt et. al., 2018 

Yes, if marker 

genes specified Deconvolution 

Predicted 

Fractions 0 N/A N/A 

DeconRNASeq Gong et. al., 2013 Yes Deconvolution 

Predicted 

Fractions 0 N/A N/A 

DCQ/ImmQuant 

Altboum et. al., 2014; 

Frishberg et. al., 2016 Yes Deconvolution Scores 3 Immune 

Human, 

Mouse 

CIBERSORT 

(absolute mode) Newman et. al., 2015 Yes Deconvolution Scores 1 Immune Human 

SaVant Lopez et. al., 2017 

Yes, if marker 

genes specified Marker Genes Scores 12 

Immune 

and Stromal 

Human, 

Mouse 

MCP-Counter Becht et. al., 2016 No Marker Genes Scores N/A 

Immune 

and Stromal Human 

 

Table 3. High level characteristics of current cell type estimation tools. Some tools accept custom 

references, which allows the tool to estimate the abundance of cell types not present in the default 

reference. Tools listed here take one of two approaches: they either perform deconvolution (most 

commonly regression) or calculate a score based on intensity of marker gene expression. Depending 

https://paperpile.com/c/cOBaQU/vTrGg+YGl8m+GPrCA+VsLcW
https://paperpile.com/c/cOBaQU/Qo5uM+Qafxz+jcWSw
https://paperpile.com/c/cOBaQU/52Bmo+npnRj
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on the tool, the output can be interpreted as fractions corresponding to the abundance of each cell 

type, or as scores for each cell type that cannot necessarily be compared in an inter-cellular manner. 

 

 To perform this study, we utilize three datasets for which cell type fractions have been 

estimated using orthogonal methods. Two of these datasets were used in a recent benchmarking 

study [30]. Both are profiled using RNA-seq, and represent samples collected either from human 

cancer ascites or human blood [31,32]. In both cases, cell type fractions have been evaluated by 

FACS sorting. The final dataset was prepared in vitro and consists of six cell types that were 

physically mixed together (in known proportions) to prepare 12 mixtures. These mixtures were then 

profiled using an Illumina HT12 BeadChip microarray. Adding to the previous benchmarking study, we 

also explore the effect of using four separate reference datasets: The Human Primary Cell Atlas, 

LM22, ImmunoStates, and a reference constructed from BLUEPRINT data. For each dataset, all tools 

(except xCell) were run four times, each time using a different reference matrix. 

The optimal choice of reference matrix varies greatly depending on the exact combination of 

tool, dataset, and cell type. While using LM22 often produces the most accurate results, there are  

many exceptions. For instance, DeconRNASeq and GEDIT produce their best results for the blood 

dataset when using the BLUEPRINT reference. For the ascites data, several tools prefer 

ImmunoStates as the optimal reference choice. The best choice of reference is highly dependent on 

the nature of the input data and on the tool being used. In practice, researchers may wish to perform 

deconvolution multiple times--in each case using a separate reference matrix--and compare results for 

consistency. 

Compared to the other tools, GEDIT produces robust and consistently accurate results (Figure 

4, Supplementary Figures 1-2). For many tools, the quality of predictions varies greatly depending on 

the cell type, dataset, or choice of reference matrix. When results are averaged across the four 

possible reference choices, GEDIT produces the minimum error and maximum correlation for all three 

datasets. This result suggests that GEDIT is a strong choice when researchers are using novel 

references matrices that have not been curated or tested. 

https://paperpile.com/c/cOBaQU/Tt53r
https://paperpile.com/c/cOBaQU/boGKE+30o1U
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Figure 4. Performance of five deconvolution tools when applied to a set of 26 physical samples from 

three sources. Actual cell type fractions are either known due to controlled cell mixing (Cell Mix) or 

estimated by FACS sorting (Ascites and Blood). In each instance, we calculate the correlation 

between actual cell type fractions and those predicted by deconvolution; deeper blues represent 

higher correlations (A). We similarly calculate average error, with deeper reds representing higher 

error (B). We test four different reference datasets for each tool, and averaged correlations across 

these 5 cases are shown in boxes. We calculate correlations for each cell type (right 5 columns), for 

each of the 3 mixtures (middle 3 columns), and for all predictions regardless of cell type or data 

source. 

 

 Lastly, we perform an evaluation of runtime required for each tool. We randomly select batches 

of 100, 200, 500, 1000, and 2000 samples from the GTEx database, and measure CPU time required 

to deconvolute these batches for each tool. The runtimes of GEDIT, dtangle, and DeconRNASeq 

scale well with growing input size, taking at most 20 minutes (Supplementary Figure 3). For larger 

input sizes, CIBERSORT can take over an hour. 

 

Comparison to Single Cell Methods 

 We also compare GEDIT to two contemporary deconvolution tools that utilize single cell data 

as their reference, namely SCDC and MuSiC [10,11]. We reproduce the steps provided by the SCDC 

authors to generate two sets of 100 simulated pancreatic mixtures. These data are created in silico 

using single cell data from two recent studies, and contain randomized mixtures of alpha, beta, delta, 

and gamma cells from pancreatic islets [33,34]. Data from a third study was used as a reference for all 

3 tools, and similarly contains alpha, beta, gamma, and delta cells [35]. In the case of SCDC and 

MuSiC, these data are used in their original single cell form. For GEDIT, pseudo-bulk expression 

profiles for each of the four cell types were created by averaging the expression values of each 

https://paperpile.com/c/cOBaQU/kB9FN+52Bmo
https://paperpile.com/c/cOBaQU/CYIMj+ESatv
https://paperpile.com/c/cOBaQU/caeQX
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member cell (e.g. expression of all alpha cells were averaged to create an alpha cell reference profile).  

 The results of GEDIT compare favorably to the two single cell tools (Figure 5). GEDIT 

produces the lowest error on the two sets of simulated mixtures by a substantial margin. Based on the 

metric of correlation between predicted and actual fractions, GEDIT produces results comparable to 

SCDC, and either comparable or superior to MuSiC, depending on the set of mixtures (Figure 5c, 

Supplementary Figure 4). Thus, by using the methodology of averaging cell clusters in the reference 

dataset, GEDIT can be applied to datasets suitable for SCDC or MuSiC. We also apply three other 

bulk deconvolution tools to this same dataset and show that GEDIT provides the best performance out 

of the four (Supplementary Figure 5). 

 

 

Figure 5. Performance of GEDIT and two single cell deconvolution tools when applied to simulated 

pancreatic islet mixtures. Two sets of 100 synthetic mixtures were used, each set from a separate 

data source of scRNA-seq alpha, beta, gamma, and delta cells [33,34]. Protocols developed by the 

SCDC authors were used to create synthetic mixtures in silico. Data from a third source was used as a 

reference [35].(A,B) Error distributions plots for each of the two datasets. Each point on a graph 

represents the percentage of predictions (y-axis) that are accurate within a particular error range (x-

axis). (C) Summary statistics of predictions for each tool and dataset. Pearson correlation and average 

error between predicted and actual cell type fractions are shown 

  

Skin Expression Data 

 

 We further validate GEDIT by using it to deconvolute a set of skin biopsies from humans with a 

variety of skin diseases [13]. The exact cell type composition of these samples is unknown, but we 

have reasonable expectations based on skin and disease biology. For example, macrophages are 

known to be abundant in granulomas of leprosy lesions, and Steven-Johnson Syndrome produces 

blisters that fill with large numbers of monocytes [36,37]. We find that, in all cases, predictions made 

https://paperpile.com/c/cOBaQU/CYIMj+ESatv
https://paperpile.com/c/cOBaQU/caeQX
https://paperpile.com/c/cOBaQU/JzODD+Ojg8O
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by GEDIT conform well with these biological expectations. Keratinocytes are highly predicted in most 

cases, as one would expect with skin samples (Figure 6). Deviations from this pattern correspond with 

disease biology. Monocytes are highly predicted in Stevens-Johnson syndrome, as are macrophages 

in the three leprosy samples, and T cells in the Mycosis Fungoides (T cell lymphoma) sample. Three 

other deconvolution tools were also applied to this dataset, and predictions follow similar patterns 

(Supplementary Figure 6). 

 

Figure 6. GEDIT predictions for 21 samples of various skin diseases. GEDIT correctly identifies 

keratinocytes and subcutaneous adipose as the most common cell. Deviations from this pattern 

correspond to disease biology. SJS represents blister fluid from Steven Johnson Syndrome, and is 

predominantly immune cells. LL and RR represent two forms of leprosy, which result in large numbers 

of macrophages. MF is a T Cell Lymphoma. 

 

Application of GEDIT to Mouse Data 

 GEDIT can be used to decompose data from any organism for which reference data is 

available. Here, we demonstrate the efficacy of GEDIT when applied to the Mouse Body Atlas, a 

collection of tissue and cell type samples collected from mice (GEO:GSE10246) [23]. As reference 

data, we assembled a matrix of 12 cell types using single cell data from the Tabula Muris [22]. GEDIT 

correctly infers the identity of purified cell types, including six samples that consist of either pure NK 

cells, B cells, T cells, or granulocytes (Figure 7). An entry for macrophages is not available in the 

reference used, but most macrophage samples are identified as monocytes, which is the most similar 

cell type present in the reference matrix. For more complex tissues, GEDIT predicts cell type fractions 

that correspond to the biology of the samples. Hepatocytes are predicted to be highly prevalent in the 

liver sample (84%) and are not predicted in any other sample (less than 5% in all cases). Similar 

patterns hold for keratinocytes in the epidermis, epithelial cells in two intestinal samples and cardiac 

muscle cells in heart and muscle samples. Three other deconvolution tools were also applied to this 

dataset, and predictions follow similar patterns (Supplementary Figure 7). 

https://paperpile.com/c/cOBaQU/3JT5d
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Figure 7. GEDIT predictions on 30 samples collected from various mouse tissues and cell types 

(Mouse Body Atlas [23]). Predictions largely conform with tissue and cell biology. 

 

Deconvolution of GTEx Database 

 To assess the use of GEDIT across very large datasets, we applied the tool to 17,382 GTEx 

RNA-seq samples collected from various tissues and accessed via the GTEx portal [38]. However, no 

single reference contained all cell types expected to be present and combining references from 

separate experiments and platforms is problematic (Supplementary Figures 8-10). Therefore, we took 

an alternate approach by performing deconvolution three times using three separate references 

(BlueCode, Human Primary Cell Atlas, Skin Signatures). We then combine these outputs by taking 

their median value; after normalization, we treat this median value as a final cell type estimate (see 

Supplementary Materials for more details). While this approach did enable predictions spanning a 

larger number of cell types than are present in any one reference matrix, it must be noted that it is not 

a proper substitute for a single unified reference (Figure 8).  

Figure 8. GEDIT cell type predictions when applied to 17,382 samples from the GTEx database. Here, 

predictions have been averaged for each tissue of origin (see supplementary methods for additional 

details). 

 

These predictions largely conform to biological expectations. For example, immune cells are 

predicted to have high abundance in blood and spleen, adipocytes in adipose tissue, Shwann cells in 

nerve and heart, and keratinocytes in skin. Each of these patterns matches expectations of which cell 

types should be present in these tissues. However, neither cardiac myocytes nor smooth muscle are 

highly abundant in GTEx muscle samples. This is likely because the GTEx samples are collected from 

skeletal muscle, which is known to have an expression profile that is distinct from that of cardiac and 

smooth muscle. 

 

https://paperpile.com/c/cOBaQU/3JT5d
https://paperpile.com/c/cOBaQU/VxWl
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GEDIT Availability 

 GEDIT can be run online and source code, associated data, and relevant files are available via 

GitHub [40]. We provide access to the tool, a set of varied reference data, and two sample mixture 

matrices. The website automatically produces a heatmap of predicted proportions for the user, as well 

as a .tsv file. The user also has access to the parameter choices of GEDIT (signature gene selection 

method, number of signature genes, row scaling).  

 

Methods 

GEDIT Algorithm 

Signature Gene Selection 

 

During signature gene selection, we automatically exclude genes with zero detected 

expression in half or more of cell types. Observed expression values of exactly zero are often the 

result of either technical artefacts or resolution issues. Using such genes as signatures can result in 

inaccurate and highly unstable results, particularly when working with scRNA-seq derived data. As an 

additional safeguard, we treat all remaining expression values of zero as the lowest observed non-

zero value in the matrix. Implementing this change has minimal effect on most genes but prevents 

genes with resolution issues from achieving artificially high scores. We consider this transformation 

valid, since values of zero generally do not represent zero expression, but rather an expression level 

below the detection limit of the technology used. 

 

For any given gene, a scoring method takes as input the vector of the expression values 

across all reference cell types, and outputs a score. A gene is considered a potential signature gene in 

cell type X if it is expressed more highly in X than any other cell type. For each cell type, we keep only 

the N genes with the highest scores, where N is the NumSigs parameter. 
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Information entropy (H) is calculated using the following formula: 

 

𝐻 =  − ∑𝑖
1 [𝑝𝑖 ∗ (𝑝𝑖) ]  (1) 

 

 where pi is the probability of the ith observation. To apply this to expression values, we convert 

the vector of expression values into a vector of probabilities by dividing by its sum. In an equal mixture 

of each cell type, the ith probability can be interpreted as the fraction of transcripts originating from the 

ith cell type. 

 

 

Row Scaling 

 

During this step, we apply a transformation on the expression values for each gene. Each gene 

has measured expression in N purified cell types and M samples. Each of these values, Xold, is 

transformed according to the following formula: 

 

𝑋𝑛𝑒𝑤 =  (𝑋𝑜𝑙𝑑 − 𝑀𝑖𝑛)/(𝑀𝑎𝑥 − 𝑀𝑖𝑛)  ∗  𝑀𝑎𝑥𝑝    (2) 

 

 Where Min is the minimum of all M + N original values, Max is the maximum of those values, 

and p is a tunable parameter with natural range p ∈ [0.0,1.0]. This procedure  produces values 

between the range of 0.0 and Maxp. 

Linear Regression: 

 

Non-negative linear regression was performed using the glmnet package in R. The glmnet 

function is used with lower.limits=0, alpha=0, lambda=0, intercept=FALSE. These settings perform a 

linear regression where all coefficients are non-negative, and with no regularization and no intercept 
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term. 

 

Reference Data 

BLUEPRINT Reference Dataset 

35 gene counts files were downloaded from the BLUEPRINT database, all collected from 

venous blood [18]. This included entries for CD14-positive, CD16-negative classical monocytes (5 

samples), CD38-negative naive B cells (1), CD4-positive, alpha-beta T cell (8), central memory CD4-

positive, alpha-beta T cell (2), cytotoxic CD56-dim natural killer cell (2), macrophage (4), mature 

neutrophil (10), and memory B Cell (1). When two or more transcripts appeared for a single gene, the 

transcript with the highest average expression was selected and others were excluded. Genes with no 

detected expression in any sample were also excluded, and then each sample was quantile 

normalized. Samples generally clustered by cell type, but we excluded one CD4-positive alpha-beta T 

cell. Replicates for each cell type were then collapsed into a single entry by taking the median value 

for each gene. 

 

ENCODE Reference Dataset 

106 transcript quantification files were downloaded from the ENCODE database [19]. These 

included all RNA-seq experiments collected from adult primary cells, excluding four with warnings. 

Warnings indicated that three samples suffered from low replicate concordance and one sample from 

low read depth, and these samples were excluded. All samples were processed by the Gingeras Lab 

at Cold Spring Harbor and mapped to GRCH38.  

The samples were quantile normalized and clustered. In cases where multiple transcripts were 

measured for a single gene, the expression of that gene was calculated as the sum of all transcripts.  

At this time, 18 additional samples were excluded as they did not cluster with their replicates. Based 

on sample descriptions and data clustering, we found that the remaining 88 samples represented 28 

unique cell types. We produced an expression profile for each cell type by merging all samples of that 

https://paperpile.com/c/cOBaQU/HNnUi
https://paperpile.com/c/cOBaQU/93edw
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cell type via median average. For example, a cluster of 19 samples were labelled as endothelial cells 

(collected from various body locations) and were merged into a single entry termed canonical 

endothelial cells. This dataset spans a wide range of stromal cell types (e.g. smooth muscle, 

fibroblast, epithelial), but contains only a single entry for blood cells, which are labelled mononuclear 

cells. 

We also combined the ENCODE and BLUEPRINT reference matrices into a single reference 

matrix, which we call BlueCode. We combined, then quantile normalized, the columns of both 

matrices. Possible batch effects in this combined matrix have not been fully evaluated. 

 

10x Reference Dataset 

 We obtained single cell expression data for nine varieties of immune cells from the 10x website 

[20]. This included at least 2446 cells for each cell type, and at least 7566 cells for all cells other than 

CD14 monocytes. For each cell type, expression values for all cells were mean averaged to form an 

expression profile. 

 

Tabula Muris Reference Dataset 

 We downloaded from the Tabula Muris single cell data for 12 clusters of mouse cell types. For 

each cluster, we averaged all cells of that cluster to produce a reference profile for the corresponding 

cell type. 

Other Reference Datasets 

 Other datasets used in this project were obtained from their corresponding publications or 

GEO repositories. This includes a reference matrix of human skin signatures, the Human Body Atlas, 

the Human Primary Cell Atlas, LM22, ImmunoStates, the Mouse Body Atlas, and ImmGen [14–

17,21,23,24].  

 

Skin Diseases Data 

 We obtained expression data from 21 skin biopsies, collected from human patients with a 

https://paperpile.com/c/cOBaQU/TRrj1
https://paperpile.com/c/cOBaQU/d9fTB+f7pHt+segww+vTrGg+6u7JV+3JT5d+ti4Ag
https://paperpile.com/c/cOBaQU/d9fTB+f7pHt+segww+vTrGg+6u7JV+3JT5d+ti4Ag
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variety of skin diseases. These data originally came from a wide range of sources and platforms, and 

were compiled into a single dataset by previous work [39].  

 

GTEx Data 

GTEx data for 17,382 samples were obtained from the GTEx portal [38]. The Genotype-Tissue 

Expression (GTEx) Project was supported by the Common Fund of the Office of the Director of the 

National Institutes of Health, and by NCI, NHGRI, NHLBI, NIDA, NIMH, and NINDS. We ran GEDIT on 

all samples three times, each time using a different reference matrix (BlueCode, the Human Primary 

Cell Atlas, and Skin Signatures). For each cell type, we calculated our initial estimate as the median 

estimate across the three sets of predictions (or fewer, if that cell type is missing from one to two of 

the reference matrices). Lastly, for each sample we divided the vector of predictions by its sum, such 

that the final predictions sum to 100%. 

 

Multi-Tool Performance Evaluation 

In Vitro Immune Cell Mixture 

 Combinations of six immune cells (Neutrophils, Monocytes, Natural Killer Cells, B cells, and 

CD4 and CD8 T Cells) were mixed together and sequenced using an Affymetrix array. Whole blood 

from healthy human donors was supplied with informed consent through a sample sharing agreement 

with the UCLA/CFAR Virology Core Lab (grant number 5P30 AI028697). CD4+ T cells, CD8+ T cells, 

B cells, and NK cells were isolated using Stem Cell Technologies (Vancouver, BC, Canada) 

RosetteSep negative selection. Neutrophils were positively selected through the EasySep approach, 

according to the manufacturer’s specifications. Cells were then counted by hemocytometer and added 

at defined percentages to a total cell count of two million cells to create six different mixtures. 

Subsequently cells were processed for RNA isolation by AllPrep DNA/RNA. Illumina HT12 BeadChip 

microarray was performed by the UCLA Neuroscience Genomics Core. Data was normalized by 

quantile normalization through R ‘normalize.quantiles’ function. 

https://paperpile.com/c/cOBaQU/kCtHu
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RNA-seq Mixtures Used for Tool Evaluation 

 We also obtained two datasets used in a recent benchmarking study [30]. The first dataset is 

composed of three RNA-seq samples, each with two technical replicates that represent biopsies of 

ovarian cancer ascites [32]. The second dataset is composed of RNA-seq collected from the blood of 

healthy individuals, some of whom recently received an influenza vaccine [31]. These data were 

downloaded from the GitHub for the benchmarking paper, which also contained FACS estimates for 

six cell types for the ascites data (B cells, dendritic cells, NK cells, T cells, macrophages, neutrophils) 

and five cell types for the blood data (B cells, dendritic cells, T cells, monocytes, natural killer cells). 

However, since dendritic cells were never present at more than 3.5% abundance, we did not evaluate 

performance for this cell type. 

 

Tools 

We installed and ran GEDIT, CIBERSORT, DeconRNASeq and dtangle on the hoffman2 

computational cluster at UCLA. xCell was run using the online interface [13]. The default choice for 

genes signatures (xCell =64) was used. The RNA-seq option was selected for the 2 RNA-seq datasets 

(blood and ascites), but not for the in vitro dataset, which was sequenced on microarray. 

xCell produces 67 output scores, seven of which were used in this study. These were the 

entries labelled “B-Cells”, “Macrophages”, “Monocytes”, “NK cells”, “Neutrophils”, “CD4+ T cells” and 

“CD8+ T Cells”. As suggested by the xCell authors, the outputs for CD4 and CD8 T cell subtypes were 

summed to produce a final output for total T cells. 

  

Reference Data 

We evaluated the performance of the four reference-based tools (GEDIT, CIBERSORT, 

DeconRNASeq and dtangle) using each of four choices of reference matrix (LM22, ImmunoStates, 

BLUEPRINT, and the Human Primary Cell Atlas). The BLUEPRINT and Human Primary Cell Atlas 

reference matrices differ from ImmunoStates and LM22 in that they contain tens of thousands of 

https://paperpile.com/c/cOBaQU/Tt53r
https://paperpile.com/c/cOBaQU/30o1U
https://paperpile.com/c/cOBaQU/boGKE


23 

genes, many of which should not be considered signature genes. This contrasts to ImmunoStates and 

LM22; each reference matrix contains fewer than 600 genes, which have been specifically identified 

as signature genes by previous work [14,21]. We include both forms of reference matrices in order to 

evaluate the input requirements of the tools studied.  

 Depending on the choice of reference matrix, reference-based tools often produce multiple 

outputs for some cell types, each representing a cell subtype. This includes B cells (naïve and 

memory), Monocytes (CD14 and CD16), NK cells (resting and active) and T cells (many subtypes 

including varieties of CD4 and CD8). In each case, the outputs for each subtype were summed in 

order to produce a total score for each greater cell type.  

 

Discussion 

GEDIT is an expression-based cell type quantification tool that offers unique flexibility and 

accuracy in a wide variety of contexts. Using both simulated and experimental data, we demonstrate 

that GEDIT produces high-quality predictions for multiple platforms, species, and a diverse range of 

cell types, outperforming other tools in many cases. We include in the software package a 

comprehensive library of reference data, which facilitates application of GEDIT to a wide range of 

tissue types in both human and mouse. GEDIT can also accept reference data supplied by the user, 

which can be derived from bulk RNA-seq, scRNA-seq, or microarray experiments. GEDIT represents 

a competitive addition to the suite of existing tissue decomposition tools while maintaining flexibility 

and performance robustness. 

As part of this project, we perform a study in which we compare the performance of several 

deconvolution tools using multiple metrics. Unlike previous evaluation studies, we explore the effect of 

reference choice by running tools multiple times with reference data from different sources. Choice of 

optimal reference has a large impact on the accuracy of many tools, but GEDIT provides robust 

performance and accurate estimates for many possible reference choices. While all efforts were taken 

to perform this comparison in an unbiased manner, the authors note that development of the tool was 

https://paperpile.com/c/cOBaQU/vTrGg+6u7JV
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still underway when the first comparisons were made. All code and inputs used to reproduce this study 

are included in the GitHub repository [40], with the exception of CIBERSORT code, which is limited by 

copyright. 

The high performance of GEDIT is due to two key innovations. Firstly, signature gene selection 

by information entropy serves to select genes that are the most informative for deconvolution. 

Secondly, the row scaling step, which aims to equally weight all signature genes into the final 

estimate, even those with comparatively low expression. In addition, the flexibility of GEDIT and the 

diverse set of reference matrices we provide allows GEDIT to be easily applied in a wide range of 

circumstances. 

The output of GEDIT represents the fraction of mRNA originating from each cell type. This is 

an effective measure of the transcriptional contribution of each cell type in a mixture. However, in 

cases where some cell types consistently produce more or less mRNA per cell, this measure may not 

represent cell counts. Data capturing the average mRNA content per cell is becoming more widely 

available in the form of single cell experiments and could in principle be used to convert our fractions 

into cell counts. 

When extensively applied to several large public datasets, GEDIT produces predicted cell type 

fractions that conform with biological expectations. When used to decompose skin biopsies, 

keratinocytes are found to be the most abundant cell type. Variations in the abundance of other cell 

types conform to expected immune responses across diseases. Similarly, cell type predictions of 

GTEx samples are concordant with our expectations of the dominant cell types across tissues. 

Schwann cells, keratinocytes, adipose cells, and immune cells are found to be most abundant in 

nerve, skin, adipose tissue, and blood, respectively. 

 Single cell RNA-seq is an emerging approach to study the composition of cell types within a 

sample. Due to biases associated with the capture of different cell types, these methods are not 

always capable of accurately quantifying cell type populations [8]. However, the pure reference 

profiles produced by existing methods can be used by GEDIT to generate accurate estimates of cell 

type populations. Thus, GEDIT circumvents some of the biases associated with the preparation of 

https://paperpile.com/c/cOBaQU/VJrmZ


25 

samples for both scRNA-seq and FACS. GEDIT is freely available, and therefore an extremely 

economical option for researchers, particularly those who profile expression data for other purposes. 

GEDIT produces accurate results when tested on mixtures of human immune cells. Compared 

to other tools, GEDIT produces the lowest error in the majority of scenarios in the studied mixtures. 

GEDIT provides increased flexibility over previously developed tools, as we provide a set of reference 

matrices for varied cell types for both mouse and human datasets. 

 GEDIT provides unique advantages to researchers, especially in terms of cell type, species 

and platform flexibility, and constitutes a useful addition to the existing set of tools for tissue 

decomposition. Our efficient decomposition methodology has been extensively optimized and we find 

that it performs robustly across a broad range of tissues in both mouse and human datasets.  Our 

future work will extend reference matrices to facilitate application of GEDIT on varied bulk gene 

expression datasets. 

Availability of Source Code and Requirements 

● Project name: GEDIT 

● Project Home Page: https://github.com/BNadel/GEDIT 

● Programming Languages: Python 2.0, R 

● Other requirements: numpy, glmnet 

● Operating Systems: Linux 

● License: MIT 

 

Availability of Data and Materials 

 All data used in this paper are freely available on GitHub [40], as well as their original sources. 

Code for DeconRNASeq was obtained as an R package from the CRAN repository. Code for 

CIBERSORT was obtained by requesting it via the web portal [14], and code for dtangle from the 

project’s GitHub page [26]. 

 Reference data is also available from their original sources. Most datasets can be found on 

project website pages or from public databases. These include BLUEPRINT [18], ENCODE [19], the 

https://github.com/BNadel/GEDIT
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Human Primary Cell Atlas [17], LM22 [14], 10x Genomics [20], Tabula Muris [22], the Mouse Body 

Atlas [23], and ImmGen [24]. Some reference matrices were obtained as supplementary files from the 

publications listed in Table 1. 

 Expression values for the blood and ascites RNA-seq datasets were obtained from the GitHub 

repository and are also available at GEO: GSE64655. The in vitro mixture of immune cells was 

prepared by our lab, and available on our GitHub page. All supporting data and materials are available 

in the GigaScience GigaDB database [41]. 

Additional Files 

 Supplementary Materials and Figures. Further details regarding synthetic mixture generation, 

deconvolution tool comparisons, and applications to the skin, mouse, and GTEx datasets. 

Abbreviations 

GEDIT: Gene Expression Deconvolution Interactive Tool; FACS: fluorescence-activated cell sorting; 

CPM: Cell Population Mapping; DCQ: Digital Cell Quantifier; NK cell: natural killer cell; scRNA-seq: 

single cell RNA sequencing; RNA: ribonucleic acid; MCP-Counter: microenvironment cell population 

counter; SaVanT: Signature Visualization Tool. 
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Dear Giga Science Reviewer 

 

Reviewer reports: 

 

Reviewer #1: The authors present an algorithm called GEDIT using information from a 

reference dataset to estimate cell type abundances in a target dataset. This manuscript is not 

qualified to be published in the Giga Science because of the following reasons: 

1. GEDIT does not show enough novelty. 

 

As the authors stated in the response document, GEDIT has two key innovations: signature 

gene selection by information entropy and the row scaling step. As shown in Figure 2a, the 

signature gene selection only has a limited improvement than the others in terms of error. The 

authors also did not have enough evidence to support how and why the row scaling step is 

helpful. On top of these 2 data preprocessing steps, I did not find any innovations on the model 

of a non-negative linear regression. 

We refer the reviewer to figure 4D, in which we demonstrate that row scaling 

dramatically improves accuracy of predictions. Here, we vary the row scaling parameter in order 

to evaluate the effect of row scaling on accuracy. When this parameter is set to 0 (the default 

value for GEDIT) both average and maximum error are greatly reduced compared to a setting of 

1.0 (i.e. row scaling is disabled).  

 

2. GEDIT does not add much values in the field. 

Although GEDIT is shown to have appealing results in comparison to existing methods on 

benchmarking experiments, it doesn't significantly outperform other methods in real data 

analysis in regards to Pearson correlation and average error. As demonstrated in 

Supplementary Figures 4 and 5, a main determinant of results quality for deconvolution is the 

reference used, not necessarily the algorithm. 

 

We refer to Figure 4, which demonstrates that GEDIT does indeed outperform other 

tools in terms of Pearson correlation. When any of the four references are used, GEDIT 

produces higher correlations between predicted and actual fractions than any other tool (the 

leftmost “all” column). In addition, the highest observed correlations for each of the 3 mixtures 

sets (ascites, cellmix, blood) are achieved by GEDIT (i.e. when the Human Primary Cell Atlas, 

LM22, and BLUEPRINT are used as reference sources, respectively). Lastly, unlike the three 

other reference-based tools, GEDIT produces positive correlations for all cell types regardless 

of choice of reference. GEDIT similarly outperforms other tools when evaluated by error 

(Supplementary Figure 2). 

Moreover, we include in the supplementary materials an additional comparison of bulk 

deconvolution tools (Supplementary Figure 6). Here, we compare the error of CIBERSORT, 

DeconRNASeq, dtangle, and GEDIT when applied to simulated pancreatic islet mixtures. Again, 

GEDIT outperforms the other deconvolution tools. 

 In addition, we are pursuing a separate project performing extensive benchmarking of 

the current field of deconvolution tools. We believe more comprehensive comparisons of these 
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Cover;ResponseLetter.docx
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tools’ performances is appropriate, but that such an undertaking represents a separate project 

that should not be bundled with the publication of a new tool. For the interest of the editors and 

reviewers, we attach an early version of this benchmarking manuscript. 

 

3. I still think comparing GEDIT to other methods using single-cell RNA-seq as a reference is 

necessary. 

Utilizing single-cell RNA-seq for deconvolution becomes cutting-edge research and many tools 

have been designed for this purpose such as MuSic. These methods are proved to have 

superior performance using microarray as references and are commonly used. It is critical to 

demonstrate whether GEDIT has better performance than these methods. 

 

  At the reviewer’s request, we have performed a comparison between GEDIT and two 

well known single cell deconvolution tools (SCDC and MuSiC). Specifically, we utilize the testing 

framework developed by the SCDC authors to prepare synthetic mixtures using single cell data 

from pancreatic islets. We include an additional section describing these results in the main 

manuscript (text below), and also refer the reviewer to Figure 5 and Supplementary Figure 5. 

 

Comparison to Single Cell Methods 
 We also compare GEDIT to two contemporary deconvolution tools that utilize single cell 
data as their reference, namely SCDC and MuSiC [10,11]. We reproduce the steps provided by 
the SCDC authors to generate two sets of 100 simulated pancreatic mixtures. These data are 
created in silico using single cell data from two recent studies, and contain randomized mixtures 
of alpha, beta, delta, and gamma cells from pancreatic islets [33,34]. Data from a third study 
was used as a reference for all 3 tools, and similarly contains alpha, beta, gamma, and delta 
cells [35]. In the case of SCDC and MuSiC, these data are used in their original single cell form. 
For GEDIT, pseudo-bulk expression profiles for each of the four cell types were created by 
averaging the expression values of each member cell (e.g. expression of all alpha cells were 
averaged to create an alpha cell reference profile).  
 The results of GEDIT compare favorably to the two single cell tools (Figure 5). GEDIT 
produces the lowest error on the two sets of simulated mixtures by a significant margin. Based 
on the metric of correlation between predicted and actual fractions, GEDIT produces results 
comparable to SCDC, and either comparable or superior to MuSiC, depending on the set of 
mixtures (Table 4, Supplementary Figure 5). Thus, by using the methodology of averaging cell 
clusters in the reference dataset, GEDIT can be applied to datasets suitable for SCDC or 
MuSiC. We also apply three other bulk deconvolution tools to this same dataset, and show that 
GEDIT provides the best performance out of the four (Supplementary Figure 6). 
 

 

Reviewer #2: For the most part the responses are sufficient and the authors have addressed the 

concerns, and the manuscript is improved. I especially appreciate that claims have been toned 

down and better contextualized. 

 

A small issue remains about minor comment 6. My point was that the readers should be made 

clearly aware that doing three deconvolutions is not ideal, and strictly speaking invalid (e.g. cell 

contents totalling over 100%). I suggested two hypothetical ways to avoid this and am not at all 

surprised it's not easy to fix with data on hand. In the context of the demonstration in this 

https://paperpile.com/c/afqpMP/1kBw+PAcQ
https://paperpile.com/c/afqpMP/VeAb+HjYL
https://paperpile.com/c/afqpMP/ecYF


particular study, what the authors did originally is acceptable. The problem I raised is if people 

start copying that practice in their own studies, and in the authors' own interest they presumably 

wouldn't want to be seen as endorsing it. The statement in the supplement that "creating a 

comprehensive reference from single cell data will likely produce superior results" should be 

more prominent, and it's not just about superior results, it's also about validity of having a single 

reference vs. multiple independent deconvolutions. 

 

To be concrete, I'd suggest that in the main body a parenthetical could be added to the effect 

that "it would be more appropriate to have a single reference containing all cell types and 

performing a single deconvolution; see supplement for discussion". As it stands I don't think the 

addition to the supplement is referenced in the main paper. 

 

We appreciate this feedback. We have adjusted the language in this section as follows: 

 

To assess the use of GEDIT across very large datasets, we applied the tool to 

17,382 GTEx RNA-seq samples collected from various tissues. However, no 

single reference contained all cell types expected to be present and 

combining references from separate experiments and platforms is 

problematic (Supplementary Figures 9-11). Therefore, we took an alternate 

approach by performing deconvolution three times using three separate 

references (BlueCode, Human Primary Cell Atlas, Skin Signatures). We then 

combine these outputs by taking their median value; after normalization, we treat 

this median value as a final cell type estimate (see Supplementary Materials for 

more details). While this approach did enable predictions spanning a larger 

number of cell types than are present in any one reference matrix, it must me 

noted that it is not a proper substitute for a single unified reference (Figure 

8).  

 

 


